首页> 外文OA文献 >Unified treatment of boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method
【2h】

Unified treatment of boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

机译:计算均质化方法中边界条件的统一处理和用于估计均质化行为的切线算符的有效算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.
机译:这项工作为非线性多物理场问题的多尺度计算均化方法中通常考虑的任意种类的微观边界条件提供了统一的处理方法。通过直接约束消除或拉格朗日乘数消除方法,开发了一种有效的程序来强制由微观边界条件引起的多点线性约束。从多个右侧线性系统以有效方式计算宏观切线算子,该多个右侧线性系统的左手边矩阵是在收敛解下微观线性化系统的刚度矩阵。右侧的向量数量等于用来表示微观边界条件的宏观运动变量的数量。由于微观线性化系统的分辨率通常遵循直接分解程序,因此使用此分解矩阵以减少的计算时间执行宏观切线算子的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号